Year 8 Mathematics Challenge 2021 Final, Wednesday 16th June 2021 via Livestorm

William Thallon

Teaching and Learning Adviser (Secondary Maths) David Cook

Lead Teaching and Learning Adviser (Primary Maths)

A warm welcome to ...

Chauncy Dame Alice Owen's Fearnhill Hockerill Marriotts Team A Marriotts Team B Presdales Queens' Richard Hale Team A Richard Hale Team B

Ridgeway Academy Roundwood Park St George's Highfield Thomas Alleyne Academy Townsend Verulam Watford Boys' Watford Girls' Team A Watford Girls' Team B

The Four Rounds

- Round 1 General Maths questions
- Round 2 Memory Round
- Round 3 Estimation and Problem-Solving Round
- Round 4 General Maths questions

60 marks for each round.

Preliminaries

- You should have pens or pencils, rubbers, and rough working out paper only.
- No calculators, no measuring equipment, and no use of computers, phones, Internet etc!
- Your teacher has been sent a spreadsheet to record your answers. This should be returned by e-mail at the end.

General Mathematics Questions

This 6-digit number is a multiple of 9.

The missing digits are the same.

What digit goes in the two empty boxes?

The numbers in each triangle follow the same rule.

Work out the missing number (in the yellow cell).

What is the smallest number which is

• 7 more than a multiple of 100

and

• 5 less than a multiple of 102?

The blue triangle is drawn on a centimetre square grid.

Work out the area of the triangle, in cm²

To make a number from this grid:

- Start on any digit.
- To get the next digit, move one square horizontally or vertically (**not** diagonally).
- You may not visit the same square more than once.

In the example, the number that has been made is **38915726**.

To make a number from this grid:

- Start on any digit.
- To get the next digit, move one square horizontally or vertically (**not** diagonally).
- You may not visit the same square more than once.

Using these rules, what is the largest number that can be made?

Question 6

The diagram shows two overlapping **congruent** rectangles.

The blue area is **40%** of the area of each rectangle.

What percentage of the whole diagram is shaded?

End of Round 1

ANSWERS

Memory Round

Memory Round: Reminders

- Words only. No hand-signals!
- (30 seconds to view, 2 minutes to describe) × 4
- Scribes need to be in a different room, so they can't see the screen.
- Pencils and rubbers only. No rulers or other drawing equipment.
- Poster is in landscape orientation.
- Don't try to memorise the whole poster in one go.

Memory Round

Poster about to be displayed for the first time.

Some facts about ...

3·14159 26535 89793 23846 26433 83279...

(commonly known as π)

- The number π is the ratio of the circumference to the diameter of a circle.
- π is mentioned in the Bible as being a little over 3.
- In 1873, William Shanks worked out the value of π to 527 decimal places.
- In 2020, a computer took 303 days to calculate the value to more than 50 trillion digits.
- Here is a rhyme to memorise the digits of π :

How I wish I could recollect pi Eureka, cried the great inventor Christmas pudding, Christmas pie, Is the problem's very centre.

• π is an irrational number. This means it can't be expressed exactly as a fraction.

•
$$\frac{22}{7} = 3.14 (2 \text{ d.p.}); \frac{355}{113} = 3.141593 (6 \text{ d.p.}).$$

$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \dots$$

$$\pi = 3 + \frac{4}{3^3 - 3} - \frac{4}{5^3 - 5} + \frac{4}{7^3 - 7} - \dots$$

Memory Round

Memory Round

Second viewing of poster coming up!

Some facts about ...

3·14159 26535 89793 23846 26433 83279...

(commonly known as π)

- The number π is the ratio of the circumference to the diameter of a circle.
- π is mentioned in the Bible as being a little over 3.
- In 1873, William Shanks worked out the value of π to 527 decimal places.
- In 2020, a computer took 303 days to calculate the value to more than 50 trillion digits.
- Here is a rhyme to memorise the digits of π :

How I wish I could recollect pi Eureka, cried the great inventor Christmas pudding, Christmas pie, Is the problem's very centre.

• π is an irrational number. This means it can't be expressed exactly as a fraction.

•
$$\frac{22}{7} = 3.14 (2 \text{ d.p.}); \frac{355}{113} = 3.141593 (6 \text{ d.p.}).$$

$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \dots$$

$$\pi = 3 + \frac{4}{3^3 - 3} - \frac{4}{5^3 - 5} + \frac{4}{7^3 - 7} - \dots$$

Memory Round

Memory Round

Third viewing of poster coming up!

Some facts about ...

3·14159 26535 89793 23846 26433 83279...

(commonly known as π)

- The number π is the ratio of the circumference to the diameter of a circle.
- π is mentioned in the Bible as being a little over 3.
- In 1873, William Shanks worked out the value of π to 527 decimal places.
- In 2020, a computer took 303 days to calculate the value to more than 50 trillion digits.
- Here is a rhyme to memorise the digits of π :

How I wish I could recollect pi Eureka, cried the great inventor Christmas pudding, Christmas pie, Is the problem's very centre.

• π is an irrational number. This means it can't be expressed exactly as a fraction.

•
$$\frac{22}{7} = 3.14 (2 \text{ d.p.}); \frac{355}{113} = 3.141593 (6 \text{ d.p.}).$$

$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \dots$$

$$\pi = 3 + \frac{4}{3^3 - 3} - \frac{4}{5^3 - 5} + \frac{4}{7^3 - 7} - \dots$$

Memory Round

Memory Round

Fourth and final viewing of poster coming up!

Some facts about ...

3·14159 26535 89793 23846 26433 83279...

(commonly known as π)

- The number π is the ratio of the circumference to the diameter of a circle.
- π is mentioned in the Bible as being a little over 3.
- In 1873, William Shanks worked out the value of π to 527 decimal places.
- In 2020, a computer took 303 days to calculate the value to more than 50 trillion digits.
- Here is a rhyme to memorise the digits of π :

How I wish I could recollect pi Eureka, cried the great inventor Christmas pudding, Christmas pie, Is the problem's very centre.

• π is an irrational number. This means it can't be expressed exactly as a fraction.

•
$$\frac{22}{7} = 3.14 (2 \text{ d.p.}); \frac{355}{113} = 3.141593 (6 \text{ d.p.}).$$

$$\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \dots$$

$$\pi = 3 + \frac{4}{3^3 - 3} - \frac{4}{5^3 - 5} + \frac{4}{7^3 - 7} - \dots$$

Memory Round

Memory Round

Time's up!

Everyone should now come back into the main room.

Please photograph or scan the finished poster, and e-mail it to:

david.cook@hertsforlearning.co.uk

End of Round 2

Estimation and Problem-Solving Round

What number is the arrow pointing to?

The diagram shows a cube of concrete and a cube of gold, drawn to the same scale.

Gold

How many times heavier is the concrete cube than the gold cube?

The mass of 1 cm³ of concrete is 2.4 grams.

The mass of 1 cm³ of gold is 19.3 grams.

Question 3

This photograph was taken during last week's partial eclipse of the Sun.

Estimate the percentage of the Sun's disc which is hidden by the Moon.

2021 is the product of **two** prime numbers.

What are they?

This is a 'magic multiplication square'.

The product of each row, column and diagonal is the same.

(In this example, the 'magic number' is **216**.)

Here is a magic multiplication square with a different 'magic number'.

What number goes in the shaded square?

Question 5

Question 6

Here are two different isosceles triangles that can be drawn on a 5 by 5 dotty grid

This isosceles triangle (**C**) does **not** count as different, as it is congruent to triangle **A**.

In total, **how many different** isosceles triangles is it possible to draw on a 5 by 5 dotty grid?

1	4
	2
	5

1	4
	2
	5

1	4	
	2	
	0	

End of Round 3

Round 3

ANSWERS

0.66 to 0.68

2021 is the product of two prime numbers.

What are they?

Ouestion 4

11.4 to 12.4

Round 3

This photograph was taken during last week's partial eclipse of the Sun.

Estimate the percentage of the Sun's disc which is hidden by the Moon.

Question 3

27.1 to 29.1%

43 and 47

General Mathematics Questions

Question 1

Two ordinary, unbiased dice are rolled.

The numbers on the dice are **multiplied** together.

What is the probability that the result is a multiple of 6? (Give the answer as a fraction.)

ABCD is a parallelogram.

The point *E* lies on the side *AB*.

The diagram is **not** drawn accurately.

Work out the size of angle DEC.

Question 3

The positive numbers *a*, *b*, *c* and *d* each satisfy an equation:

 $a^2 - 1 = 19$ 6b - 2 = 4b + 7 $\frac{21}{c} = 5$ 5(d - 1) = 17

Write a, b, c and d in ascending order (starting with the smallest)

Question 4

In the sketch diagram, which is not drawn to scale,

A is the point (-6, 2)B is the point (14, 17)

The point *C* lies on the line *AB*, between *A* and *B*. The ratio of distances *AC*:*CB* is 2:3.

What are the co-ordinates of the point C?

Example

Here is a painting by the artist Vincent Van Gogh.

The pie chart shows the relative proportions of the **five** colours **most used** in the painting.

(This idea came from the artist Arthur Buxton.)

Match the correct pie chart to each of these paintings.

Reaper

Starry Night

Question 6

The diagram shows four white squares and five green rectangles.

It is not drawn accurately.

Work out the total area shaded green, in cm²

End of Round 4

Year 8 Mathematics Challenge Final 2021

Please finalise your answer spreadsheet as quickly as possible.

Please include the school/team name in the file name, and e-mail it to:

william.thallon@hertsforlearning.co.uk

ANSWERS

Year 8 Mathematics Challenge Final 2021

Marking in progress

Year 8 Mathematics Challenge Final 2021

Results imminent!

Well done to all

Year 8 Mathematics Challenge 2021 Final, Wednesday 16th June 2021 via Livestorm

William Thallon

Teaching and Learning Adviser (Secondary Maths) David Cook

Lead Teaching and Learning Adviser (Primary Maths)

