2024 HFL EDUCATION YEAR 4 MATHEMATICS CHALLENGE。

EVENT GUIDANCE AND PRACTICE QUESTIONS

Event Guidance

Format

- This brand-new competition will begin with four 1-hour heats for teams to join online from their school.
- The 20 highest scoring teams from across the heats will be invited to join us online again for the Grand Final.
- Schools can enter multiple teams on the same date or across different heat dates.
- Each team should be made up of four Year 4 pupils who will work together to solve questions and problems across three live rounds.

Live rounds

- There are three rounds in each live heat.
- Two rounds consist of 5 questions or problems to solve.
- One round consists of visual estimation questions and problems.
- There is a time limit (up to 2 minutes) for each question which will be explained by the presenter in each round.
- A 'final few seconds' prompt will be provided by the presenter so teams can agree their answer and get ready for the next question.

The pre-round

- There is one round for pupils to complete before the heat. This is the 'Spot the Shape!' round.
- The materials and rules for this round will be made available prior to the heat.
- This round is not strictly timed. We anticipate that it will take around 15 minutes to complete.
- Team answers will be submitted on the Google Form along with answers from the live event.

Submitting answers

- 'Team answer sheets' will be available to download prior to the live event. These can be printed and provided to the team to write on.
- Final answers need to be entered into the Google Form by the supervising adult.
- Submission of answers will be explained during the live event.

Scores

- Following the completion of the live heats, team marks will be emailed to the school contact.
- A certificate for each member of the team will also be sent to the school contact.

Invitation to the final

After all four heats have been completed, the 20 highest scoring teams will be notified by email and invited to take part in the final on Wednesday 22nd May from 1.30 - 3pm.

The event platform for the heats

- The heats and final will take place on the HFL Education webinar platform.
- For the best functionality, we recommend accessing the event using Google Chrome, Safari or Firefox as the web browser.
- Instructions for joining the live event will be provided upon booking.
- For any issues with the registration process, please contact us at primarymaths@hfleducation.org.

Getting ready

- The team will need to have clear access to a screen and sound. A class whiteboard or screen is advisable for size but not essential.
- Pupils cannot be seen or heard by other schools or the presenters.
- The supervising adult can use the 'chat' facility to communicate with the presenters.
- We recommend that pupils have paper, pencils, pens, and erasers.
- Supervising adults are asked to ensure that pupils do not have calculators or rulers.

If you have entered multiple teams

- If you have entered more than 1 team, schools can choose whether the teams will take part from the same room (separated) or in different rooms.
- Decide who team A and Team B etc are and include this in the team name on the Google Form.
- If teams are in the same room, please ensure the screen they can all see is large enough.

Correspondence

All correspondence, including queries, should be sent to primarymaths@hfleducation.org

Challenge, teamwork, making sense of problems and sharing ideas

To support your team, we have compiled some practice questions and top tips for each round.

Challenge

The competition is designed to be fun and will challenge teams in many ways. Not least in the mathematical focuses, but also in working 'well' as a team and agreeing answers within the time limit set.

Teamwork

Collaborative working in mathematics (and in life) is a crucial skill. The competition challenges how well teams can work together. Alongside practising strategies to solve mathematical questions and problems, it is also helpful to consider how to be a great team.

Tips for developing great teamwork:

Working together is crucial. Think about how you can best do this.

- Decide upon who the 'scribe' (answer recorder) is. This isn't the person who makes the final decision, but they will ensure that your team commits to an answer before time runs out.
- Use paper to record your jottings and ideas. These will be helpful when showing other team members your thoughts.
- You may decide to quickly divide up parts of a question to work out a smaller part each before coming back together to agree an overall answer.
- Think through how you can quickly reach an agreement, listen to each other, and consider each team member's response. Agreeing how you will calmly negotiate will really help in the midst of the competition.

Making sense of problems and sharing ideas

When thinking about and articulating their thoughts around a problem or question, children might find the following sentence frames useful:

- I can see ...
- I have noticed ...
- I know that ...
- If ... then ...
- I see what you mean. What l've noticed is that ... What do you think?

Practice Questions

The following practice questions and answers will be available as a PowerPoint upon booking for use in school.

Round 1 and 4 - General mathematics

These two rounds each consist of 5 questions that need to be solved within a 2 minute time limit. Teams must work quickly and efficiently. Each question will have a different mathematical focus and will require different types of problem-solving skills.

Each question is 'marked' out of 10 . Marks can be awarded for partial answers.
Some questions ask pupils to complete a calculation. In these, pupils can solve separately and then compare their answers to agree the team's response.

Questions with 'parts'

Some questions contain 'parts' to solve. Team members could solve one 'part' each and then use these to agree an overall answer. A team member may have a strength in one aspect but teams will need to decide quickly if they are going to distribute roles as the clock will be ticking.

Some example 'parts' style questions:
Solutions can be found on page 11.

Order these from the calculation with the largest value
to the calculation with the smallest value.
(answer in the form of D, B, A, C)
A) $1 \frac{2}{8}-\frac{3}{8}$
B) $2 \frac{4}{8}-\frac{6}{8}$
C) $\frac{3}{8}+\frac{5}{8}$
D) $\frac{6}{8}+\frac{5}{8}$

2 Ohfleducaton

6

Which of these numbers has the most factors?

3 ohfleducaton

Put these in order, starting with the smallest answer.
(answer in the form of D, B, A, C)
A) $2308+4699$
B) $7100 \div 1$
C) $8003-3079$
D) 825×9
50.hfleducation

Problem-style questions

Some questions require pupils to problem solve in context. Teams will have to work quickly to establish what the problem is asking them to do and identify the relevant information that they need to work on.

Teams can work separately or in pairs to work on the problem and then confer to agree the solution.
Being able to make quick sketches and representations to aid thinking will support this, as will pausing to consider what is 'known' and what is 'unknown' in a problem.

Some examples of 'problem-style' questions:
Solutions can be found on page 12.

Buy 1 box of cupcakes and get a $2^{\text {nd }}$ box for $\frac{1}{3}$ of the price.

Leni buys this box of cupcakes and gets another box in the sale.

What is the cost per cupcake?

HFI
вонневuvation

Round 2 - Visual estimation

This round consists of a series of questions and problems that focus on pupils' visual estimation skills.
Each answer in the estimation round is worth up to 10 points. Teams do not need to have the 'exact' answer. Instead, they use their estimation skills to agree answers that are approximately accurate.

Marks are awarded in 'zones of closeness'. So, for example, if the exact answer was 100, pupils would be awarded the full 10 marks for an answer between $95-105$. Points then decrease incrementally as the distance from the 'exact' answer increases.

As this challenges estimation, we suggest pupils practise by thinking about what good estimates might be. Teams might also think about how they can work together to look at the visual stimulus, think separately or in pairs and then reach an agreed team response.

The most important tip is to look carefully at the image and the clues and prompts already provided.
The following questions provide opportunities for practice of estimation and of team-working:
Solutions can be found on page 13.

Estimate how much water is in all 4 glasses altogether.

What is the value at point W on this zigzag number line?

Tips:

- Remember this is a visual estimation question and not an exact measuring one.
- Would scaling help here?
- Consider making an estimate each and then comparing to agree an approximation.

Tips:

- Estimate the position of other 'benchmark' numbers and the space between them.
- Think about whether the line is increasing or decreasing in value as it zigzags towards point W.

Round 3 - Spot the shape!

For the 'Spot the Shape!' round, teams will be required to complete a challenge related to geometry before their live event. There will be a space to enter the team's answer within the 'team answer sheet' and will be submitted for marking within the Google Form.

Marks will be awarded for partial answers. For example, if there were 10 shapes within the image, the full 10 marks would be awarded for an exact answer of 10 . Points would then decrease incrementally where fewer shapes have been discovered.

Vocabulary that may be useful for team discussion when completing the 'Spot the Shape!' challenge:
Vocabulary list taken from the HFL Mathematics Vocabulary Index.

Year 1	Year 2	Year 3	Year 4
pattern	vertical	orientation	classify
2-D / two-dimensional	horizontal	degree / degrees	nonagon
rectangle / rectangles	vertex / vertices	angle	decagon
square / squares	edge / edges	right angle	isosceles
circle / circles	face / faces	perpendicular	equilateral
kite / kites	quadrilateral /	parallel	parallelogram
triangle / triangles	polygon / polygons	horizontal	trapezium
3-D / three-dimensional	pentagon / pentagons	vertical	protractor
cube / cubes	hexagon / hexagons	quadrilateral	adjacent
cuboid / cuboids	heptagon / heptagons	polyhedron	regular
pyramid / pyramids	octagon / octagons	polyhedral	irregular
cylinder / cylinders	prism / prisms	acute angle	rhombus
sphere / spheres	cone / cones	geometric shapes	
side / sides	symmetry	internal angle	
line	line of symmetry	reflection	congruent
straight	surface		
curved / flat	three-dimensions		
open / closed shape	properties	internal angle	
corner	classify	congruent	
base	opposite		
point	regular		
diagonal	prregular		
pentagon / pentagons			
hexagon / hexagons			
heptagon / heptagons			
octagon / octagons	opposite		

An example ‘Spot the shape!’ question:
Solutions can be found on page 13.

How many quadrilaterals are in the picture?

Tips:

- Consider the properties of the shape being searched for.
- Consider how to work strategically:
- Will your team begin with the smallest shapes or the biggest shapes?
- Will your team start from a particular corner or place and track round?
- How will your team track the shapes already found and those that are newly discovered?
- Consider how your team will work. Will you work together as a full team? Will you split up and work individually or in pairs and then come back together?

Solutions

Order these from the calculation with the largest value to the calculation with the smallest value. (answer in the form of D, B, A, C)
A) $1 \frac{2}{8}-\frac{3}{8}$
B) $2 \frac{4}{8}-\frac{6}{8}$
C) $\frac{3}{8}+\frac{5}{8}$
D) $\frac{6}{8}+\frac{5}{8}$

20 hflemucation
A) $7 / 8$
B) $14 / 8$ or $16 / 8$
C) $8 / 8$ or 1
D) $11 / 8$ or $13 / 8$

B, D, C, A

Ahmed:
$12 \times 20 p$ coins $=$ £2.40

Jasper:
$15 \times 20 p$ coins $=$ £3.00
$18 \times 50 p$ coins $=$ £9.00

Total: $£ 12.00$

Which of these numbers has the most factors?

$24-1,2,3,4,6,8,12,24$
$30-1,2,3,5,6,10,15,30$
$36-1,2,3,4,6,9,12,18,36$
$47-1,47$

Put these in order, starting with the smallest answer.
(answer in the form of D, B, A, C)
A) $2308+4699$
B) $7100 \div 1$
C) $8003-3079$
D) 825×9

50hfleducation
A) 7,007
B) 7,100
C) 4,924
D) 7,425

C, A, B, D

Solutions (continued)

$22 \times 8=176 \mathrm{~cm}$
$£ 18+£ 6=£ 24$
Cost per cupcake $=£ 1$

Lines of symmetry:
A has 1
D has 0
B has 5
E has 2
C has 3
F has 1
B has the most

Solutions (continued)

Estimate how much water is in all 4 glasses altogether.

What is the value at point W on this zigzag number line?

W = approx. 2.97

How many quadrilaterals are in the picture?

