Year 8

Mathematics

Challenge Final

 Hertfordshire Development Centre Tuesday 19th June 2018William Thallon
Secondary Mathematics Adviser
@HfLSecMaths

Preliminaries

- If your school has more than one team, decide on a 'Team A' and a 'Team B'.

Make sure you write your team name on each Answer Sheet.

Units are important! Correct answers with incorrect or missing units will not get full marks.

Pens/pencils only. No calculators or measuring equipment.

The five rounds

Round 1 Round 2

Round 3

Round 4
Round 5

Problem-solving Round Break
General Maths questions Memory Round

Estimation Round General Maths questions

60 marks for each round.

Round 1

General

Mathematics Questions

In a school of 1,200 students:
850 have a Twitter account;

620 have a Facebook account;

- 330 have both.

How many students have neither?

Round 4

Question 2

This kite has a width of 7 cm and a height of 12 cm .

Work out its area.

Question 3

Alison wants to travel by train from Woking to Winchester, travelling on Monday.

She arrives at Woking Station at 09:15.
According to this timetable, what is the earliest she should arrive in Winchester?

Round 1

Question 4

Figure 1 shows a regular pentagon and five squares.

The side lengths of all the shapes are equal.

Figure 2

Figure 1

The shapes are joined together to make the shape shown in Figure 2.

The perimeter of the shape in Figure 2 is 60 cm less than the total perimeter of the shapes in Figure 1.

Work out the perimeter of the shape in Figure 2.

The value of x is $-\frac{1}{2}$. Place the following expressions in ascending order.

$$
2 x \quad \frac{x}{2} \quad \frac{2}{x} \quad x^{2}
$$

(Write the expressions, not their values.)

There are four people in a quiz team:
Akash Bobbie Carla Dominika

To choose a captain and vice-captain, their names are put into a hat and drawn out at random.

The first person drawn out of the hat will be the captain; the second one will be vice-captain.

> What is the probability of getting Akash as captain and Bobbie as vice-captain?

Give your answer as a fraction in its simplest form.

Round 1: Answers

Q1
60
Q2
$42 \mathrm{~cm}^{2}$
Q3
Q4 $\quad 90 \mathrm{~cm}$
Q5
$\frac{2}{x} \quad 2 x \quad \frac{x}{2} \quad x^{2}$
Q6 $\quad \frac{1}{12}$

Round 2

Memory Round

Memory Round

We have a hidden mathematical poster.
Two members of your team (the observers) are allowed to come and look at the poster.

They must then go back and describe it for the other two people (the scribes) to draw.

The observers are not allowed to draw the poster, or make notes when they are looking at the poster.

When describing the poster, observers must use words only. They are not allowed to draw anything, or use their hands in any way.

Memory Round

The observers will have four chances to view the poster.

30 seconds to view
2 minutes to describe
30 seconds to view
2 minutes to describe
30 seconds to view
2 minutes to describe 30 seconds to view
2 minutes to describe
After this, the team must hand their poster in immediately, with their team name on it.

Only ONE sheet must be handed in per team.

Memory Round

You now have one minute to:

- decide who will be the observers and who will be the scribes;
- find pencils, rubbers, rulers and anything else you might need;
- decide on tactics!

Round 3

Problem-
 Solving Round

Round 3

You should have:

- 6 problem sheets
- 12 coloured shapes

- 18 plastic counters
- cards numbered 1 to 9
- a glue stick

Round 3

Pentominoes are shapes made from 5 squares.

Fit some (or all) of the pentominoes given to you to make the largest rectangle (or square) that you can. The pentominoes must not overlap, and there must not be any gaps.
Stick the pentominoes onto this grid. The larger the area, the more points you will score.

The diagram shows a milk crate.
It has 4 rows and 6 columns.
Show how 18 bottles can be placed in the crate so that each row and each column has an even number of bottles.

Round 3

Fractions Puzzle

You have cards numbered 1 to 9 .
Use the cards to complete the following fraction calculations.
(Stick the cards onto this sheet.)

Round 3

Number detective

Use the clues to work out the values of these six numbers:

- They are all integers.
- \quad The mode of the numbers is 7.
- The median of the numbers is $\mathbf{8 1 / 2}$.
- \quad The range of the numbers is $\mathbf{2 0}$.
- The mean of the numbers is $\mathbf{1 2 1 / 2}$.
- One of the numbers is three times one of the other numbers.

Write your answers in the boxes.

Mr Smith has five students in detention in his classroom.
On the teacher's desk, there is a jar of sweets.
Mr Smith leaves the classroom for a few minutes.
On his return, he finds that several of the sweets have been eaten while he was out of the room.

He questions the students.

- The students who ate the sweets lied.
- The students who didn't eat them told the truth.

Student 1 said: "Only one person ate the sweets."
Student 2 said: "Two people ate the sweets."
Student 3 said: "Three people ate the sweets."
Student 4 said: "Four people ate the sweets."
Student 5 said: "All five of us ate the sweets."
How many students ate the sweets?

$$
\text { In this task, } \quad a=4 \quad b=5 \quad c=9
$$

Write an expression which gives each of the numbers between 1 and 10 inclusive.

- Each expression must use all three letters, a, b and c.
- You may not use any of the letters more than once.
- Your expressions must not use any numbers. (For example, $3 a-b-c$ is not allowed, as it uses a ' 3 '.)
- You may use any of the following:
add subtract multiply divide square root brackets.
- Indices may be used as long as you don't use numbers in them. (So b^{2} is not allowed, but b^{a} is allowed.)
- Expressions must be written correctly (e.g. $a b$, not $a \times b$).

One expression in each box; one mark for each.

Round 3 Answers

Pentominoes

Pentominoes are shapes made from 5 squares.
Fit some (or all) of the pentominoes given to you to make the largest rectangle (or square) that you can. The pentominoes must not overlap, and there must not be any gaps.
Stick the pentominoes onto this grid. The larger the area, the more points you will score.

Round 3 Answers

The diagram shows a milk crate.
It has 4 rows and 6 columns.

Show how 18 bottles can be placed in the crate so that each row and each column has an even number of bottles.

		\square	\square	\square	\square
			\square	\square	\square
	\square		\square	\square	\square
	\square	\square			\square

Round 3 Answers

Fractions Puzzle

You have cards numbered 1 to 9.
Use the cards to complete the following fraction calculations.
(Stick the cards onto this sheet.)

Round 3 Answers

Number detective

Use the clues to work out the values of these six numbers:
or

- They are all integers.
- \quad The mode of the numbers is 7 .
- The median of the numbers is $\mathbf{8 1 / 2}$.
- The range of the numbers is $\mathbf{2 0}$.
- The mean of the numbers is $\mathbf{1 2 1 / 2}$.
- One of the numbers is three times one of the other numbers.

Write your answers in the boxes.

Mr Smith has five students in detention in his classroom.
On the teacher's desk, there is a jar of sweets.
Mr Smith leaves the classroom for a few minutes. On his return, he finds that several of the sweets have been eaten while he was out of the room.

He questions the students.

- The students who ate the sweets lied.
- The students who didn't eat them told the truth.

Student 1 said: "Only one person ate the sweets."
Student 2 said: "Two people ate the sweets."
Student 3 said: "Three people ate the sweets."
Student 4 said: "Four people ate the sweets."
Student 5 said: "All five of us ate the sweets."

How many students ate the sweets?

1	+h:- +-al. -	
	$b \sqrt{a}-c$	$\frac{\sqrt{a}+\sqrt{c}}{b}$
2	$c-b-\sqrt{a}$	$\frac{c-b}{\sqrt{a}}$
3	$\frac{a+b}{\sqrt{c}}$	$\frac{c}{b-\sqrt{a}}$
4	$\sqrt{a} \sqrt{c-b}$	$\sqrt{b^{\sqrt{2}}-c}$
5	$b(\sqrt{c}-\sqrt{a})$	$\sqrt{b(c-a)}$

$h-r$	$-n$	
6	$b+\sqrt{c}-\sqrt{a}$	$c-b+\sqrt{a}$
7	$\frac{b+c}{\sqrt{a}}$	$\sqrt{b c+a}$
8	$a+c-b$	$\sqrt{a}(c-b)$
9	$c(b-a)$	$\sqrt{c}(b-\sqrt{a})$
10	$b+c-a$	$\sqrt{a}+b+\sqrt{c}$

Round 4

Estimation Round

Estimate the sum of the four reflex angles in this symmetrical diagram.

Estimate the mass of the battery.

Round 4

Question 3

Estimate
 the number of baseballs in this pyramid.

Round 4

Question 4

Estimate the area of Luxembourg.

(You may choose which units to use.)

Estimate how many spoonfuls
 of water it
would take to fill this cup.

Estimate how long it has been since you saw this picture of the clown.

Round 4: Answers

(Equivalent answers in alternative units accepted)
Q1 $\quad 1200^{\circ}$ to 1300°
Q2
60 to 70 grams
Q3
2840 to 2900
Q4
2457 to $2715 \mathrm{~km}^{2}$ 960 to 1060 sq miles

Q5
35 to 45
Q6
TBD

Round 5

General

Mathematics Questions

Round 5

Question 1

In my sock drawer, there are 6 red socks and 10 green socks. They are all mixed up. Apart from their colour, all the socks are identical.

The room is in pitch darkness, so I can't tell which sock is which. I want to pick out two matching socks.

What is the smallest number of socks I must take out of the drawer to be certain of getting a pair that match?

Question 2

The number 24 is an abundant number. It is less than the sum of its proper factors.

$$
\begin{aligned}
& \text { Proper factors of } 24: 1,2,3,4,6,8,12 \\
& 1+2+3+4+6+8+12=\mathbf{3 6}
\end{aligned}
$$

What is the smallest abundant number?

Adam earns $£ 600$ per week.
He asks to work shorter hours. His pay is reduced by 20%.

A few weeks later, he starts working normal hours again. His pay goes back up to $£ 600$.

When his pay goes back up, what is the percentage increase?

This pattern is made from nine straight lines.

It has rotation symmetry order 9.

Work out the size of the angle marked a.

n is an integer greater than zero.

$n^{2}+n+11$ is not a prime number.

What is the smallest possible value of n ?

This question can be answered without having to do any long and complicated calculation!

> If you worked out
> $1 \times 2 \times 3 \times 4 \times \ldots \times 24 \times 25$ how many zeroes would there be at the end of the answer?

Round 5: Answers

Q1 3
Q2
12
Q3
25\%
Q4
100°
Q5
10
Q6
6

Year 8

Mathematics

Challenge Final

 Hertfordshire Development Centre Tuesday 19th June 2018William Thallon
Secondary Mathematics Adviser
@HfLSecMaths

